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[1] Stability analysis of gravity-driven unsaturated flow is examined for the general case
of Darcian flow with a generalized nonequilibrium capillary pressure-saturation relation.
With this nonequilibrium relation the governing equation is referred to as the
nonequilibrium Richards equation (NERE). For the special case where the nonequilibrium
vanishes, the NERE reduces to the Richards equation (RE), the conventional governing
equation for describing unsaturated flow. A generalized linear stability analysis of the RE
shows that this equation is unconditionally stable and therefore not able to produce
gravity-driven unstable flows for infinitesimal perturbations to the flow field. A much
stronger result of unconditional stability for the RE is derived using a nonlinear stability
analysis applicable to the general case of heterogeneous porous media. For the general
case of the NERE model, results of a linear stability analysis show that the NERE model is
conditionally stable, with lower-frequency perturbations being unstable. A result of this
analysis is that the nonmonotonicity of the pressure and saturation profile is a requisite
condition for flow instability. INDEX TERMS: 1875 Hydrology: Unsaturated zone; 1866 Hydrology:

Soil moisture; 3210 Mathematical Geophysics: Modeling; KEYWORDS: Richards’ equation, gravity-driven

flow, dynamic capillary pressure, traveling wave solution, stability analysis
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1. Introduction

[2] Laboratory and field observations [Lissey, 1971;
Glass et al., 1989; Kung, 1990; Isensee et al., 1990; Prazak
et al., 1992; Ritsema et al., 1993; Shalit et al., 1995; Chakka
and Munster, 1997; Elliott et al., 1998] and conceptual
models [Roth, 1995; Nieber, 1996; Ju and Kung, 1997;
Jarvis, 1998] of vadose zone processes have pointed to the
significance of preferential flow phenomena on the rapid
flow of water and transport of contaminants through the
vadose zone. Nieber [2000] discusses several types of
preferential flow processes, with gravity-driven unstable
flow being one of them. The experimental and mathematical
study of gravity-driven unstable flow over the past three
decades has led to the conclusion that unstable flows can
occur over the wide range of conditions that are found under
field conditions.
[3] The practical importance of the fingering phenome-

non has motivated much effort over the last three decades
[Raats, 1973; Philip, 1975; Diment et al., 1982; Hillel and
Baker, 1988; Glass et al., 1989; Baker and Hillel, 1990;
Nieber, 1996; Ursino, 2000; Du et al., 2001; Eliassi and
Glass, 2001; Dautov et al., 2002; Egorov et al., 2002;
Nieber et al., 2003] to better understand this phenomenon

from physical and mathematical standpoints. While the
studies that have been performed have each provided an
understanding of some specific aspects of the fingering
phenomenon, we conclude from our findings that an overall
physically-based description remains to be discovered. On
the basis of previous work and our results to date we
conclude that to describe fingering, a mathematical model
must bear at least two principal features: (1) the model must
be able to generate initial unstable growth of small pertur-
bations of the wetting front, and (2) it must be able to
promote persistence of the initially growing perturbations
by limiting lateral spreading behind the unstable front. This
manuscript addresses the first of these two features. The
second feature will be considered in a subsequent manu-
script on two-dimensional flow.
[4] As mentioned above, the conditions that initiate

unstable flows are not well understood. With respect to
the Richards equation (RE), it being the conventional
equation to model unsaturated flow in porous media, we
can declare based on the nonlinear stability analysis of Otto
[1997] that the RE model cannot produce instability of a
wetting front in homogeneous porous media and therefore
cannot be used as a model for finger flow in homogeneous
porous media. This conclusion is derived from the stability
estimates of standard boundary value problems for the
Richards equation by Alt et al. [1984] and Otto [1997],
and is valid for any applied finite perturbation. This result is
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mathematically accurate and stronger than the one derived
from linear stability analysis which deals with infinitesimal
perturbations. One limitation of the analysis by Otto [1997]
is that it considered the porous medium to be homogeneous.
In section 3 of this manuscript, Otto’s conclusion about the
unconditional stability of the RE are extended to the case of
heterogeneous porous media.
[5] It is astonishing that despite the long history of

investigating stability of the RE model with linear stability
analysis, mathematically accurate results have been
obtained only for the limiting case of the Green and Ampt
model by Raats [1973] and Philip [1975]. The likely reason
is that the spectral problem for the resulting non-self-adjoint
second order differential equation in infinite domains is very
complicated. Therefore, in all of the theoretical studies
known to us, authors have made some simplifying assump-
tions, which have led the authors to draw conclusions about
the stability of the RE which are either not generally
applicable [Diment and Watson, 1983; Ursino, 2000] or
are incorrect [Kapoor, 1996; Du et al., 2001].
[6] The most thorough analysis of the stability of

Richards equation was performed by Diment et al. [1982]
and Diment and Watson [1983]. Diment et al. [1982]
derived the differential equation that describes the pertur-
bation problem and examined it numerically for a limited
number of cases [Diment and Watson, 1983]. They found
that the traveling wave solution, being a basic solution for
the Richards equation as derived by Philip [1957], is stable.
However, numerical solutions, even performed very accu-
rately, cannot provide the stability criteria, while a general
analytical study will do so. Therefore we were motivated to
provide an analytical linear stability analysis of the RE in
spite of the general results of Otto [1997].
[7] In section 4 we provide this linear stability analysis of

the Philip’s traveling wave solution of the RE [Philip, 1957]
for the process of gravity-driven infiltration. We note that in
the analysis we do not make any simplifying assumptions.
By use of the two main ideas of (1) symmetrization of the
perturbed equation and (2) the invariant properties of the
basic solution, the analysis may be done analytically.
[8] A second motivation for presenting the general linear

stability analysis of the RE is to apply the analysis method
to modifications of the RE to identify the types of mod-
ifications needed to admit flow instabilities. Therefore
techniques developed in section 4 are then used in sections
5 and 6 for stability analysis of the traveling wave solution
for two other models of flow in unsaturated porous media.
The first model, called here the sharp front Richards
equation (SFRE), based on the assumption of air entry
pressure [Hillel and Baker, 1988] was introduced by Selker
et al. [1992] to model the moisture profile within a finger.
The SFRE model dictates that there is a sharp wetting front
where water saturation jumps from an initial value beyond
the front to the value related to the air entry pressure, and
the Richards equation holds behind the front. In section 5
we conclude that the traveling wave solution for the SFRE
model is unstable, and the higher the frequency of the lateral
perturbation, the faster the growth of the corresponding
perturbation with time.
[9] The second model, introduced in section 6, is the

nonequilibrium Richards equation (NERE) accounting for a
general nonequilibrium capillary pressure-saturation rela-

tionship. To obtain the NERE we hold the standard water
mass balance equation, and replace the equilibrium pres-
sure-saturation relation with a general nonequilibrium rela-
tion. Introducing several assumptions to the class of such
modifications, we study the low-frequency behavior of the
perturbed flow equation and derive the stability criterion.
This criterion relates to the nonmonotonicity of the pressure
profile for the basic traveling wave solution. As a conclu-
sion, we treat the nonmonotonicity of the traveling wave
solution as a necessary condition to the hypothetical model
for unstable flow in unsaturated porous media.
[10] The results on stability for all models are discussed

in section 7. These results are also compared to results from
previous studies.
[11] Within the presentation on flow stability the follow-

ing terminology adopted from the theory of stability [Joseph,
1976] will be used. Asymptotic stability means that pertur-
bations will decay with time. Neutral stability means that
perturbations will neither decay, or grow with time. Insta-
bility means that perturbations will grow without limit with
time. Throughout most of the manuscript when we mean
asymptotic stability we will use the term stability or stable.

2. Richards Equation

[12] The conventional Richards equation (RE) for the
flow of water in unsaturated porous media may be written
in dimensionless form as

@s

@t
�r � K sð Þrpþ @

@z
K sð Þ ¼ 0; ð1Þ

p ¼ P sð Þ; ð2Þ

where s is the effective saturation (0 	 s 	 1), p is the water
pressure, K is the relative hydraulic conductivity, and z is
the vertical coordinate taken positive downward. Function
P is the equilibrium pressure being a function of s (solid
line in Figure 1). This function monotonically increases
with s from �1 at s = 0 to a some limiting value taken zero
at s = 1. To have the RE work in the saturated region the
function P(s) prolongs by a vertical line 0 	 p < 1 at s = 1
and relation (2) may be treated as an inclusion meaning that
p belongs to a graph of the corresponding multivalued
function.
[13] With the approach frequently used for saturated-

unsaturated porous media, we introduce the single-valued
function S, the inverse to P, by rewriting equation (2) as

s ¼ S pð Þ; ð3Þ

and solve the system equations (1) and (3) for pressure as a
primary variable. Equation (3) will be applied to the
nonlinear stability analysis of the RE presented in section 3.
[14] Limiting the analysis to the unsaturated regions the

system equations (1) and (2) may be reduced to one
equation with s being a primary variable by introducing
the diffusivity function D(s) = K(s)P0(s) (prime indicates the
first derivative with respect to saturation s):

@s

@t
�r � D sð Þrsþ @

@z
K sð Þ ¼ 0: ð4Þ
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In this paper we require that functions K(s), D(s) and P(s)
bear the following standard properties within the interval
(0,1): they are monotonically increasing and continuously
differentiable functions, and K(s) is strictly convex, such as
K(1) = 1, K(s) / sa, D(s) / sb as s ! 0, a > 1, b > 0.
Equation (4) will be applied to the linear stability analysis
given in sections 4.1 and 4.2.

3. Stability Analysis of the RE Model: General
Results

[15] The RE model expressed in the form of equations (1)
and (3) belongs to a wide class of nonlinear elliptic partial
differential equations analyzed by Alt et al. [1984] and Otto
[1997]. Using a Kirchhoff transformation

u ¼
Zp

0

K S pð Þð Þdp

reduces the system equations (1) and (3) to

@s

@t
�r � ruþ @

@z
K sð Þ ¼ 0; s ¼ b uð Þ; b uð Þ ¼ S p uð Þð Þ:

For a bounded piecewise smooth region � = (x,y,z) and
standard boundary conditions, Alt et al. [1984, theorem 1.7]
show the existence of the weak solution of ‘‘finite energy’’
for this problem. Guided by their result, Otto [1996, 1997]
proved uniqueness of the solution and the stability estimate
of the form

Z
�

js1 tð Þ � s2 tð Þjd� 	
Z
�

js01 � s02jd� ð5Þ

for any two given solutions s1 and s2 corresponding to
initial conditions with s1

0 and s2
0 respectively. Assumptions

made regarding the behavior of the functions b: R ! [0, 1]
and K: [0, 1] ! [0, 1], are relatively unrestrictive and are
satisfied for functions K(s), D(s), and P(s) that are restricted
by the assumptions given above. Inequality equation (5)
dictates that if the saturation field s1

0 at the initial time is
arbitrarily perturbed by d0 = s2

0 � s1
0, then the perturbation

d = s2 � s1 thereafter will not grow and always be less than
the initial one (kdk 	 kd0k).
[16] The analysis provided by Otto [1997] is complicated.

The reason for this is because Otto studied a general case
allowing dry zones with s = 0 to exist in the solution. If
there are no dry zones assumed at the initial time than it is
obvious from a physical standpoint that they will not appear
within a finite time. If this assumption is valid a priori, then
the proof of equation (5) can be achieved more easily than
in the work by Otto [1997] by using the standard technique
given by Alt et al. [1984]. This technique does not utilize
the Kirchhoff transformation, which is limited to homoge-
neous porous media, and therefore may be applied to the
general case of heterogeneous porous media. The presenta-
tion of this technique is given in Appendix A in which it is
shown that the RE is stable even for the case of heteroge-
neous porous media.
[17] Referring to the terminology of stable/unstable sol-

utions given in the Introduction, we can state that for
asymptotically stable and for neutrally stable solutions kdk
is limited regardless of the form of the initial perturbation
d0, and kdk ! 0 as t ! 1 for asymptotically stable
solutions. While for unstable solutions kdk ! 1 as t ! 1
for some initial perturbation d0. Holding to this terminol-
ogy we declare that inequality equation (5) points to the
conditions of either asymptotic, or neutral stability for any
solution of the RE. For the general situation considered by
Otto [1997] it is impossible to specify the type of stability,
either asymptotic or neutral, but the type will depend on
the form of both the basic solution and boundary con-
ditions. For instance, for the case s1

0 � 0 and a no flow
boundary condition we obtain from the mass balance
equation for any initial perturbation d0 that kdk = kd0k,
and hence the trivial zero solution is neutrally stable. On
the other hand, if the boundary conditions are taken such
as they lead to a steady state solution then the solution for
any initial conditions tends to this steady state at t ! 1,
and hence any solution for these boundary conditions is
asymptotically stable.
[18] The conclusion of the discussion above is that the RE

model is stable for any perturbation for either homogeneous
or heterogeneous porous media, and therefore it makes the

Figure 1. Capillary pressure-saturation function for Ri-
chards equation (solid line), Green-Ampt model (dotted
line), and intermediate curve p = p* + c � (P(s) � p*)
(dashed line).
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RE model inappropriate to model fingering in the unsatu-
rated porous media.
[19] In the literature on soil hydrology and soil physics

[Diment et al., 1982; Kapoor, 1996; Ursino, 2000; Du et al.,
2001] stability of the RE has been studied by the linear
stability approach applying infinitesimal initial perturbation
d0 to the basic solution. Unlike the general results on
stability discussed in this section, the principle of the linear
stability guarantees stability of the basic solution only for
infinitesimal perturbations. This principle is much weaker
than principle (5) of global stability provided by nonlinear
theory, since global stability includes linear stability but not
vice versa. The real value of linear stability analysis is found
in its ability to manifest conditions under which the basic
solution might possibly be unstable.
[20] In the remainder of this paper linear stability anal-

ysis of various flow equations will be analyzed. This
analysis will present analytical results that have not been
presented previously for the RE and will reveal the mod-
ifications to the RE that are necessary to allow instability of
flow.

4. Stability Analysis of the RE Model: Linear
Analysis

[21] Following the conventional approach of linear sta-
bility analysis, the process of wetting front instability will
be examined by superposition of a perturbed flow regime
onto a basic flow regime. The basis flow is derived
through the traveling wave solution of the one-dimensional
Richards equation as described by Philip [1957] and
Parlange [1971]. The perturbed flow is derived through
a local linearization of the Richards equation in three
dimensions. Mathematical analysis (analytical or numeri-
cal) for this linear equation must be done to predict
whether a perturbation will grow or decay. If the pertur-
bation decreases with time, the wetting front is stable. If
the perturbation increases with time, the wetting front is
unstable. Such procedure is used in the stability analysis
presented below.

4.1. Basic Solution

[22] We consider a typical example of fingering when
water is applied to an upper surface of the initially ‘‘dry’’
unsaturated porous medium z � 0. The water flux q is less
than the saturated hydraulic conductivity of the porous
medium. For this case, one-dimensional solution of the
Richards equation (1) and (2) represents a gravity-driven
wetting wave and the solution approaches the self-similar
traveling wave-type regime with time. This traveling wave
solution is used as a basic solution to provide a stability
analysis of the gravity-driven infiltrating flow.
[23] The traveling wave solution for equations (1) and (2)

with the traveling wave coordinate x

s ¼ s0 xð Þ; x ¼ z� vt ð6Þ

was developed by Philip [1957]. The boundary conditions

s0 �1ð Þ ¼ s�; s0 þ1ð Þ ¼ sþ; 0 < sþ < s� < 1 ð7Þ

specify values of the saturation ahead (s+) of the wetting
front (in the ‘‘dry’’ region) and behind (s�) the wetting front

(in the ‘‘wet’’ region), while the velocity of the wetting front
v is defined as

v ¼ K sþð Þ � K s�ð Þ
sþ � s�

: ð8Þ

The value of s� is specified by the flux Q, and Q = K(s�).
[24] Substituting equation (6) into equation (4) and inte-

grating the resulting ordinary differential equation with
equation (7) results in

�D sð Þ ds0
dx

þ K s0ð Þ � vs0 ¼ K sþð Þ � vsþ: ð9Þ

Integrating both sides of equation (9) we obtain

x� x* ¼
Z s*

s0

D sð Þds
v s� sþð Þ � K sð Þ þ K sþð Þ ; ð10Þ

where s is the dummy variable, and s* (s+ < s* < s�) is the
saturation at the arbitrary point x*. Arbitrariness of x*
indicates that the Philip’s solution (10) is valid with any
spatial shift. We also emphasize that the denominator in
equation (10) is positive for s 2 (s+, s�) and equal to zero at
both ends s = s+ and s = s�, because K(s) is considered to be
a convex function. As a result, s0(x) monotonically
decreases from s� at x = �1 to s+ at x = +1 (solid line
in Figure 2), and has exponential asymptotic behavior at
infinity:

x ! �1 : s0 � s�ð Þ / exp a�xð Þ;

a� ¼ K 0 s�ð Þ � vð Þ=D s�ð Þ:
ð11Þ

4.2. Perturbed Flow Equation

[25] An essential requirement for stability analysis is a
knowledge of the time response of the system to small
disturbances. This is examined mathematically by assum-
ing that the physical variables experience some small
disturbance:

s ¼ s0 xð Þ þ es1 x; y; x; tð Þ þ O e2
� �

; ð12Þ

where s(x, y, x, t) is the perturbed saturation field, s0 is the
basic solution (10), s1 is the bounded perturbation, and e is a
small constant representing the size of the disturbance. For
convenience, in this analysis we use saturation as a primary
function and moving coordinate x = z � vt as a primary
variable instead of pressure and z respectively as used by
Diment et al. [1982], Kapoor [1996], and Ursino [2000].
[26] The Richards equation is assumed to hold not only

for the basic solution but also for the perturbed solution.
Therefore we (1) rewrite the Richards equation in moving
coordinates (x, y, x, t) as

@s

@t
þ @

@x
K sð Þ � vsð Þ � r � D sð Þrsð Þ ¼ 0; ð13Þ

wherer = (@x, @y, @x), (2) substitute the form of the solution
given by equation (12) into governing equation (13), and (3)
linearize the resulting expression ignoring quadratic and
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higher-order terms. Combining terms with zero and first
power of e and equating them to zero leads to two equations.
The first equation has terms with e0, and solution to this
equation known as a basic solution is presented by equation
(10). Terms with e1 occur in the second equation. This
equation describes the behavior of the imposed disturbance
and it referred to as the first-order linear perturbation
equation, and is given by

@s1
@t

þ @

@x
K 0 s0ð Þ � v� D0 s0ð Þ ds0

dx

� �
s1

� �
�r � D s0ð Þrs1ð Þ ¼ 0;

ð14Þ

where D0(s) and K 0(s) are the first derivatives of D(s) and
K(s) with respect to saturation s. The initial condition
describes an initial form of the perturbation:

t ¼ 0 : s1 ¼ sinit x; y; xð Þ: ð15Þ

Solution of the formulated Cauchy problem (14) with initial
condition (15) describes the evolution of an arbitrary
perturbation with compact support, esinit, imposed into the
basic solution at the initial time.
[27] In the following the general disturbance of the

wetting front is given by the sum of a number of basic

modes through a Fourier series representation, and the
instability of the general disturbance is then determined
by stability analysis of the basic modes. This spectral
analysis is conducted by transforming equation (14) to the
frequency domain via a Fourier transformation. With this
transformed equation the stability of individual Fourier
modes (disturbance wavelengths) can be assessed. The
Fourier transform of equation (14) taken with respect to x
and y leads to

@�s1
@t

� @2

@x2
D s0ð Þ�s1ð Þ þ @

@x
K 0 s0ð Þ � vð Þ�s1ð Þ þ w2D s0ð Þ�s1 ¼ 0;

ð16Þ

where w(w2 = wx
2 + wy

2) is the wave number, wx and wy are
the angular frequencies in the Fourier transform of s1 with
respect to x and y respectively, and �s1 is the Fourier
transform of s1. Since the superposition principle is valid for
the linear problem given by equations (14) and (15), the
condition (15) can be equally imposed on equation (16). It is
necessary to only replace in equation (15) the functions s1
and sinit by Fourier transforms �s1 and �sinit respectively.
[28] The form of the perturbation equation (16) is com-

plicated and seems to be inappropriate for analytical study,
and therefore it needs to be modified to be more tractable.
For this modification we symmetrize this equation by
replacing �s1 with a new function q, and x with a new
coordinate z (�1 < z < + 1):

z ¼
Z

dxffiffiffiffiffiffiffiffiffiffiffi
D s0ð Þ

p ; q ¼ D1=4 s0ð Þffiffiffiffiffiffiffiffi
�s00

p �s1: ð17Þ

Identical transformations provided in Appendix B reduce
the problem (16) to the Cauchy problem (18) for q(z, t):

@q
@t

¼ @2q
@z2

� w2Dþ F
� �

q; q z; 0ð Þ ¼ qinit zð Þ; ð18Þ

F ¼ 1

B

d2B

dz2
; B ¼ D1=4 �s00

� �1=2
; ð19Þ

where function qinit has a compact support, function D(z)
monotonically decreases with z from D� = D(s�) at z =
�1 to D+ = D(s+) at z = +1, function B(z) exponentially
approaches zero at infinity, and F(z) has upper and lower
limits as illustrated in Figure 3 and exponentially
approaches finite positive values as z ! ±1:

F �1ð Þ ¼ F�; F� ¼
K 0
� � v

� �2
4D�

; K 0
� ¼ K 0 s�ð Þ: ð20Þ

We notice that the formulae in equation (20) are derived
from equation (19) with known behavior of s0 at infinity
defined in equation (11).

4.3. Stability Analysis

[29] Coefficients D and F are independent of time t, and
separating variables we attempt to solve the Cauchy prob-

Figure 2. Saturation profile of traveling wave solution of
the Richards equation (solid line) and Green-Ampt model
(dotted line).
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lem (18) seeking a spectrum of the operator appearing in the
right-hand side of equation (18). In other words, we seek all
values of k such that the equation

d2�

dz2
� w2Dþ F
� �

� ¼ �k�; �1 < z < 1 ð21Þ

has bounded and nonzero solutions �(z; k). In this case, the
solution of the Cauchy problem (18) represents a linear
superposition of terms �(z; k) exp (�kt) (in general a
Stieltjes’ integral). It is apparent that the solution damps out
with time if the spectrum lies in the semi-plane Re(k) > 0 of
the complex plane k. Therefore stability of the traveling
wave solution relates to positivity of the real part of the
spectrum of the problem (21).
[30] Thus we have arrived at the classical mathematical

problem (21) known as Sturm-Liouville problem. This
problem is singular because z is defined within an infinite
domain. In quantum mechanics equation (21) is called the
Schrödinger equation. Having similarity with the Schrö-
dinger equation we may say that it determines a stationary
state of particles with energy k in external potential field U
= w2D + F. This problem being very important in practice
has been thoroughly studied and properties of the solution are
established for various forms of the potential U [Carmona
and Lacroix, 1999].
[31] For the problem of interest to us, the potential U is

uniformly bounded from below for any z, and hence, the
operator of the problem is self-adjoint and semi-bounded
from below in the space L2(�1, 1) of functions such as
their quadratics are integrated over the entire axis. Therefore
the spectrum of the operator is real and two parts of the
spectrum may be distinguished: the continuous part for k 2
[kess(w), 1), and the discrete part k0(w) < k1(w) < . . . <
km(w) < kess(w) (perhaps empty) between a minimum value
of U and the lowest point kess(w) of the continuous spectrum
(m < 1). Points k of the continuous spectrum correspond to
bounded solutions C(z; k) of the problem (21) (generalized
eigenfunctions), while eigenvalues ki(w), i = 0, . . ., m
correspond to the functions C(z; ki(w)) 2 L2(�1, 1)
decreasing as z tends to infinity. The value of kess(w) is

determined only by asymptotic behavior of the potential U
at infinity

kess wð Þ ¼ min U �1ð Þ;U þ1ð Þð Þ ¼

¼ min w2D� þ F�;w2Dþ þ Fþ
� �

: ð22Þ

kess(w) is positive due to positivity of both D± and F±. At
last, to establish that the traveling wave solution for the
Richards equation is stable we need to prove that if the
smallest eigenvalue k0 exists, that it is positive.
[32] We start the analysis with the limiting case w = 0 and

utilize the approach of Barenblatt [1996, p. 212]. By trial-
and-error setting the eigenvalue k = 0 we found that B
satisfies equation (21), and therefore k = 0 and function B
are eigenvalue and eigenfunction respectively for this case.
Function B given by the definition (19) has no zeroes for
finite z. However, the eigenfunction should have as many
zeros as its ordinal number that forces B to correspond to the
smallest eigenvalue. Since k = 0 there are no negative
eigenvalues in the problem, and k0 = 0 for w = 0.
[33] For a nonzero wave number w > 0 the smallest

eigenvalue k0(w) obeys the inequality

Dþw2 	 k0 wð Þ 	 D�w2: ð23Þ

To prove (23) we use the variational principle from [chap.
13.1 Reed and Simon, 1978] adapted to our problem:

k0 wð Þ ¼ min
y

Z1
�1

y02 þ w2Dþ F
� �

y2
� �

dz
Z1
�1

,
y2dz

0
@

1
A; ð24Þ

where the minimum is taken over such functions that squares
of both functions and their first derivatives are integrable.
Using the usual technique [Reed and Simon, 1978] and
noting that the minimum of the sum of functions is not less
than the sum of the minimums of functions yields from (24)

k0 wð Þ � k0 0ð Þ þ w2 min
y

Z1
�1

Dy2dz
Z1
�1

,
y2dz

0
@

1
A ¼ Dþw2:

This proves the left inequality in (23). The right inequality in
(23) may be proved by substituting B as a test function y in
equation (24).With this proof and knowing thatD+ is positive
we establish that for any w > 0 the spectrum of the problem
(21) is positive. This immediately proves that the traveling
wave solution of the Richards equation is stable.
[34] It is interesting to investigate the behavior of the

smallest eigenvalue k0 for the problem (21) as a function of
w. This function relates to how the potential U(z;w) behaves
with a change of w. For a small w the profile of U(z;w)
resembles the form of F(z) and has a typical region of
depression as demonstrated in Figure 3. The preceding
analysis showed that the minimum value in this region is
sufficiently small so the eigenvalue k0 exists for the problem
(21). Increasing w, the curve U(z) shifts upward at all points
z since D is positive, and it causes a monotonic growth of
k0(w) (see (24)). The depth of the potential depression
region diminishes with increase of w since D is monotonic
and the depression region eventually disappears at some

Figure 3. Typical profile of F(z).
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value of w making U a monotonic function of z. For this
case the problem (21) cannot have eigenvalues and the
whole spectrum is continuous. So there exists a maximum
limiting value wmax such that the smallest eigenvalue
approaches the border of the continuous spectrum as shown
in Figure 4.
[35] We should reiterate the fact that we implemented a

standard hydrodynamic stability analysis approach to prove
that the traveling wave solution of the Richards equation is
stable. Such approach a priori postulates that the perturbed
saturation field s is represented in the form i ¼

ffiffiffiffiffiffiffi
�1

p� �
s ¼ s0 xð Þ þ eS xð Þ exp i wxxþ wyy

� �
� kt

� �
ð25Þ

that leads to a spectral problem for eigenfunctions S and
eigenvalues k [Diment et al., 1982] similar to the problem
(22) and (24). The approach used in this paper differs from
the standard approach because we sought function � =
SD1/4(�s0

0 )�1/2 instead of S and use variable z instead of x.
Such transformations make the foregoing analysis of the
spectral problem transparent.
[36] The special case w = 0 for a spectrum with no lateral

perturbations should be discussed in some detail before
finishing this analysis of the RE. According to equation
(23), the main eigenvalue k0 is equal to zero and, as result,
the corresponding perturbation holds and does not damp out
with time as it would be for the case w > 0. This would
indicate, prima facie, that for this problem the flow will be
unstable when w = 0. However, this is not a correct
assessment according to the following explanation. We
mentioned previously that the basic solution (10) is valid
for any translation in the parameter x*. For the case with w =
0, the eigenfunction for the perturbed solution � = B (or S =
s0
0 in the standard perturbation analysis approach (25)) corre-
sponds to a slight spatial shift of the basic solution on e.

Figure 8.4 of Barenblatt [1996] shows just such a perturbed
solution and the shifted unperturbed solution to which the
perturbed solution tends. This shifted solution is just the basic
solution translated by a constant, and as such this shifted
solution should not be considered an instability. As stated by
Barenblatt, ‘‘If . . . the perturbed solution tends not to the
original unperturbed solution as t!1, but to a shifted one,
then there is no reason to consider this transition as an
instability.’’

4.4. Transition to the Green and Ampt Model

[37] Mathematically accurate results for stability of the
traveling wave solution had been obtained to date only for
the relatively simple Green and Ampt model of infiltration
[Green and Ampt, 1911]. The stability criterion first postu-
lated by Raats [1973] and later improved and derived by
Philip [1975] leads to a primitive result for the problem
considered in this paper. According to Philip’s criterion
[Philip, 1975, p. 1044], ‘‘the physical attribute of the system
which is fundamental to the question of stability is the water
pressure gradient behind the wetting front. When this
gradient assists the flow, the flow is stable; when this
gradient opposes it, the flow is unstable.’’ However, for
the Green and Ampt model the pressure gradient behind the
wetting front for the traveling wave type of the solution is
equal to zero! This means that the traveling wave solution of
the Green and Ampt model is neutral with regards to any
frequency of lateral perturbations: perturbations neither
grow nor damp out with time, and they hold constant such
as the minimum eigenvalue k0 in equation (25) is identically
equal to zero for all w.
[38] The preceding stability analysis may be also applied

to the Green and Ampt model if small modifications are
made. We generalize Richards equation by introducing a
family of equilibrium pressure functions Pc(s) = p* + c(P
� p*) illustrated in Figure 1. It is evident that Pc = P for c
= 1, while Pc tends to a step function representing the
Green and Ampt model for c = 0. Consequently, a diffusive
front of the traveling wave solution of the Richards equation
approaches a sharp front solution by the Green and Ampt
model with decreasing of c as shown in Figure 2.
[39] Replacing function P in equation (2) by Pc con-

serves the preceding analysis and final results but leads to
small changes of the form of both the basic solution and
the perturbed flow equation. In fact, the diffusivity func-
tion D(s) = KP0 transforms to cD(s). In the eigenvalue
problem (21) coefficients k and w2 are replaced by ck and
c2w2 respectively. These replacements show that if k0(w)
represents a smallest eigenvalue for the Richards equation
with c = 1, then kc = c�1k0(cw) represents a smallest
eigenvalue for the Richards type equation with any c > 0.
Then, equation (23) dictates that for any c > 0 the
smallest eigenvalue kc is positive and tends to zero only
as c ! 0. This confirms results known to date on stability
of the Green and Ampt model, and the neutral traveling
wave solution for the Green and Ampt model becomes
asymptotically stable if any Richards type regularization is
applied.

5. Sharp Front Richards Equation

[40] In the preceding sections we demonstrated that the
traveling wave solution of the RE is unconditionally stable

Figure 4. Spectrum of the problem (21). Continuous
spectrum occupies the hatched domain.
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and, hence, finger generation and breakup of the uniform
wetting flow may not be described by this model. In this
section we present a modification of the RE model, the
sharp front Richards equation (SFRE) that might possess the
capacity to describe this phenomenon. The SFRE model, is
based on the concept of air entry pressure [Hillel and Baker,
1988] and was introduced by Selker et al. [1992]. The SFRE
model is based on the assumption that the porous medium is
divided by the sharp wetting front z = ze(x, y, t) into two
regions: the porous medium remains initially dry with s = s+
for z > ze, and the RE is valid for z < ze. Saturation se at the
wetting side of the front is given by

z ¼ ze � 0 : s ¼ se ð26Þ

and the value of se is close to unity and relates to the value
of the air entry pressure pe: pe = P(se). An additional
condition on the advancing front is mass conservation. This
condition gives a relationship between the advancing front
velocity and the difference of normal components of the
flux at both sides of the front:

se � sþð Þ @ze
@t

¼K seð Þ � K sþð Þ

� D sð Þ @s

@z
� @ze

@x

@s

@x
� @ze

@y

@s

@y

� �����
z¼ze�0

: ð27Þ

The traveling wave solution for the SFRE model is derived
by Selker et al. [1992]. For the wetted region the solution
has the same form as the Philip’s solution (8) and (10), but
now the values s* and s0 in (10) fall within the interval
[s�, se] instead of [s+, s�]. The denominator in equation (10)
is negative within [s�, se] and equal to zero at s = s�. This
means that the function s0(x) monotonically increases from
s� at x = �1 to se at x = xe0. s0 approaches s� as x ! �1
exponentially as in equation (11), and the advancing front
coordinate xe0 is determined by equation (10) with s0 = se.
This basic solution is also invariant over the spatial shift
along x and therefore we may set xe

0 = 0.

5.1. Perturbed Flow Equation

[41] The preceding linear perturbation technique is ap-
plied. We derive the perturbation equation first and, then,
formulate the problem on stability of the traveling wave
solution for the SFRE model as a problem of seeking the
spectrum of the perturbed equation. The perturbed satura-
tion field and perturbed advancing front coordinate x = xe
are:

s ¼ s0 xð Þ þ e�s1 xð Þ exp i wxxþ wyy
� �

� kt
� �

þ O e2
� �

; ð28Þ

xe ¼ 0þ ex1e exp i wxxþ wyy
� �

� kt
� �

þ O e2
� �

: ð29Þ

Substituting (28) into (4) we obtain the perturbed equation
in the wetting region

x < 0 : �k�s1 ¼
d2

dx2
D s0ð Þ�s1ð Þ � d

dx
K 0 s0ð Þ � vð Þ�s1ð Þ

� w2D s0ð Þ�s1; ð30Þ

which is similar to equation (16) for the RE model but is
valid only for the negative x. Substituting (29) into
conditions on the wetting front equation (26) and equation
(27) yields for x = 0:

�s1 þ x1e
ds0

dx
¼ 0;

�k se � sþð Þx1e ¼ � d

dx
D s0ð Þ�s1ð Þ � x1e

d

dx
D s0ð Þ ds0

dx

� �
:

Eliminating xe
1 from these equations and accounting for (9),

we get the following boundary condition for �s1 to the
perturbed flow equation (30)

x ¼ 0 : k
se � sþ

s00

� �
�s1 ¼ K 0 s0ð Þ � vð Þ�s1 �

d

dx
D s0ð Þ�s1ð Þ: ð31Þ

Replacing �s1 by a new function �:

� ¼

ffiffiffiffiffiffiffiffiffiffiffi
D s0ð Þ
s00

s
�s1

and providing linearizing transformations, similar to that in
Appendix B, to the perturbed problem (30) and (31), we get
the following spectral problem for �

x < 0 : ��00 þ w2 þ F
� �

� ¼ k

D s0ð Þ�; ð32Þ

x ¼ 0 : �0 ¼ B0

B
� k

se � sþ
B2

� �
�; ð33Þ

where F = B00/B and B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D s0ð Þs00

p
: The appropriate

spectrum technique consists of seeking for k for any fixed
w such that the problem (32) and (33) has finite nontrivial
solutions.

5.2. Stability Analysis

[42] For convenience, we rewrite equation (32) consider-
ing k as a parameter of the spectral problem and �w2 as an
eigenvalue. Denoting �w2 through l, we arrive at the
standard spectral problem for the Schrödinger operator

x < 0 : �00 � U k; xð Þ� ¼ �l�

with the third-kind boundary condition (33). The potential
U(k, x) = F � k/D(s0) is lower bounded for x, and therefore
the operator of the problem is self-adjoint and lower semi-
bounded in the space L2(�1, 0) of square integrable
functions. This formulation allows us to apply standard
techniques. The analysis presented in Appendix C demon-
strates that for any k 	 0 there exists eigenvalue l0(k) < 0
monotonically increasing with increase of k from �1 at k =
�1 to zero at k = 0, and there are no other spectral points in
the {l 	 0, k 	 0}.
[43] Now we need to write these results for l(k) in terms

of k(w): For any w there exists a unique negative eigenvalue
k0(w) of the problem (32) and (33), and this value mono-
tonically decreases with increase of w:

k0 0ð Þ ¼ 0; k0 wð Þ ! �1 as w ! 1:

Any other part of the spectrum is positive.
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[44] Negativeness of the eigenvalue k0(w) dictates that the
traveling wave solution of the SFRE model is unstable,
while monotonicity of k0(w) concludes an absence of
preferentially growing perturbation modes meaning that
the smaller the perturbation length (2p/w), the faster the
growth of such perturbations.

6. Nonequilibrium Richards Equation

[45] In this section we present a possible modification of
the Richards equation and consider a family (or ensemble)
of new models. For this family we maintain the mass
balance equation (1) and modify the equilibrium pressure-
saturation relationship (2). One type of family may be
obtained by applying a dynamic capillary pressure theory
(or dynamic memory effects) [Gray and Hassanizadeh,
1991]. The key point in the theory of dynamic memory
effects is the replacing of the equilibrium relation (2) with a
kinetic equation such as

t_s ¼ p� P sð Þ; ð34Þ

where p represents a dynamic nonequilibrium pressure. In
the following analysis we do not specify the form of the
new rheological relationship which replaces equation (2),
and use its general representation

F s; p; _s; _p;�s; �p; . . .ð Þ ¼ 0 ð35Þ

instead of (34). The system of equations (1) and (35) is
called the nonequilibrium Richards equation (NERE)
model.
[46] We define (s0(x),p0(x)) as some traveling wave type

solution for the NERE model with boundary conditions (7).
If such solution exists then the wetting front velocity v is
independent of equation (35) and designated by the formula
(8). In the sections below we apply a linear stability analysis
to examine this solution.

6.1. Stability Analysis

[47] Following the general scheme of the linear stability
analysis we seek the perturbed solution of equations (1) and
(35) in a form analogous to equation (25):

s ¼ s0 xð Þ þ eS xð Þ exp i wxxþ wyy
� �

� kt
� �

þ O e2
� �

; ð36Þ

p ¼ p0 xð Þ þ eP xð Þ exp i wxxþ wyy
� �

� kt
� �

þ O e2
� �

: ð37Þ

Substituting equations (36) and (37) into equations (1) and
(35) leads to a system of two perturbation equations for the
eigenvalues k and eigenfunctions S and P. One of these
equations

w2K s0ð ÞP þ dA

dx
¼ kS ð38Þ

is arrived at from the mass balance equation (1), where

A ¼ K 0 s0ð Þ 1� dp0

dx

� �
S � vS � K s0ð Þ dP

dx

while the second equation written in functional form as

F S;P; S0;P0; . . . ; s0; p0; s
0
0; p

0
0; . . . ; k

� �
¼ 0 ð39Þ

is governed by the rheological relation (35). We notice that
there are no spatial derivatives in the equation (35) and it
results in F being independent of both wx and wy . Boundary
conditions for S and P require the flux A to vanish as x !
±1. Integrating equation (38) and using no flux boundary
conditions yields

w2

Z þ1

�1
K s0ð ÞP dx ¼ k

Z þ1

�1
S dx: ð40Þ

[48] The key moment in the following analysis is that for
wx = wy = 0 it is possible to determine one of the eigenvalues
(k0 = 0) of the problem and the corresponding eigenfunc-
tions (S = s0

0 , P = p0
0 ). We note that the traveling wave

solution for this modified Richards equation is invariant
with regard to the arbitrary shift e, as may be seen from
equations (1) and (35) where time and spatial coordinates
occur only in derivatives terms. This leads to (s, p) = (s0(x+ e),
p0(x+ e)) considered as oneof the possible perturbed solutions
for the system equations (1) and (35). Expanding s0(x + e) and
p0(x + e) into the Taylor series of e

s ¼ s0 xð Þ þ es00 xð Þ þ O e2
� �

; ð41Þ

p ¼ p0 xð Þ þ ep00 xð Þ þ O e2
� �

; ð42Þ

and comparing equations (41) and (42) with equations (36)
and (37) at k = 0 and wx = wy = 0 we obtain that the
eigenfunctions corresponding to k0 = 0 are s0

0 (x) and p0
0 (x).

[49] Now we construct the asymptotic solution for k0 for
infinitesimal wx and wy . The frequencies wx and wy occur in
the perturbation equation (38) only within the coefficient
w2, and, then, we may expand eigenvalue k0 and
corresponding eigenfunctions by their expansion in power
series of w2. It gives

k0 ¼ 0þ bw2 þ . . . ; S ¼ s00 þ ~Sw2 þ . . . ; P ¼ p00 þ ~Pw2 þ . . .

ð43Þ

Coefficient b determines the behavior of k0 for low-
frequency perturbations and may be found by substituting
(43) into (40) and integrating the resulting equation with
boundary conditions (7):

b ¼ C
sþ � s�

; where C ¼
Z þ1

�1
K s0ð Þp00 dx:

Stability of the perturbations corresponding to the eigenva-
lue k0 for a small w is designated by a sign of b which is
opposite to the sign of integral C, because of s+ < s�. This
means that the low-frequency perturbation is stable for
C < 0 and unstable otherwise, i.e., C > 0. It is known that the
basic solution is considered unstable if the solution for
the corresponding perturbed equation turns out to be
unstable for at least one frequency eigenvalue. So, we have
now established that if C > 0 then the traveling wave

EGOROV ET AL.: STABILITY ANALYSIS OF INFILTRATION SBH 12 - 9



solution of the NERE model equations (1) and (35) is
unstable.

6.2. Low-Frequency Instability Criterion (LFC)

[50] In the previous section we state the stability criterion
in terms of the sign of the coefficient C. If an opposite
criterion, such as if C < 0 then traveling wave solution of the
NERE equations (1) and (35) is stable, would be proved
then the sign of C would give us a complete stability
criterion. However, it seems to be impossible to prove this
opposite criterion for the general form equation (35) of the
rheological relationship. Therefore in this section we dis-
cuss this criterion (called LFC) for a specific case of low-
frequency perturbations when w � 1. To provide the
analysis we make the following assumption: for w = 0 the
perturbation equation does not have negative eigenvalues
with k0 = 0 being a minimum eigenvalue. From the physical
standpoint, this assumption says that only lateral perturba-
tions may cause instability of the traveling wave solution,
i.e., the traveling wave solution is stable if there is no lateral
perturbation, or w = 0.
[51] The LFC is valid for the Richards equation, as may

be seen from the analysis in section 4.3. For the case of the
RE model the coefficient C is negative because pressure is a
monotonic function for the traveling wave solution, and the
LFC predicts the traveling wave solution to be stable. This
result is valid not only for a small w but for any perturba-
tions as shown by the analysis given in section 3.
[52] The LFC may be used to describe stability for the

relaxation model equation (34) as well. The result shown by
Cuesta et al. [2000] is that the traveling wave solution for
this model is monotonic for lower values of t (smaller
nonequilibrium effects), and is nonmonotonic for higher
values of t (larger nonequilibrium effects). For this case, the
LFC predicts a transition from stability to instability of
solutions with increase of t. Numerical simulations provided
by Egorov et al. [2002] confirm this conclusion.
[53] The LFC illustrates that instability of the traveling

wave solution for a wide class of models having equations
(1) and (35) as the general form (i.e., the NERE model) is
caused by nonmonotonicity of the pressure distribution in
the basic solution, and C > 0 only if the function p0
increases with depth within some interval of x. Therefore
the NERE must produce nonmonotonicity in the basic (or
traveling wave type) solution to be unstable and thereby be
able to generate fingers. This requirement to the new
hypothetical model matches the experimental results, for
example, in the work by Selker et al. [1992], where physical
nonmonotonicity was shown to be an essential characteristic
of gravity-driven unstable flow.

7. Discussion

[54] To recap the results presented in this manuscript, we
have shown by linear stability analysis that the Richards
equation is unconditionally stable to infinitesimal perturba-
tions. This was accomplished by applying a general pertur-
bation to the basic solution. Symmetrizing the resulting
perturbed equation by introducing a new space coordinate x,
and function q, led to an elliptic eigenvalue problem which
was analyzed to provide stability criteria. The only assump-
tion made in this analysis was that the conductivity-satura-

tion function be convex. Ursino [2000] arrived at the same
conclusion regarding unconditional stability of the Richards
equation, while Diment and Watson [1983] hinted at such a
conclusion in their work using a numerical solution for the
perturbed flow equation.
[55] We also analyzed the general case of a finitely

perturbed flow field in heterogeneous porous media, using
an extension of the analyses presented by Alt et al. [1984]
and Otto [1997]. The result of this analysis was that the
Richards equation is unconditionally stable even for finite
perturbations. No restriction was placed on the form of the
conductivity-saturation function for this nonlinear analysis.
These stability analyses are very general and very strong,
and we conclude that the Richards equation is uncondition-
ally stable, and therefore is not an appropriate equation to
use in modeling unstable flows.
[56] This conclusion of unconditional stability of the

Richards is in contrast to the conclusions derived by Kapoor
[1996] and Du et al. [2001]. The reason for this difference
lies in the simplifying assumptions used by these authors
in making their mathematical problem statement tractable
to solution. Those assumptions/limitations will now be
discussed.
[57] The analysis by Du et al. [2001] started out with the

basic solution in the same way the analysis was performed
in this manuscript. In fact, their analysis is essentially
correct up through equation (15) of their paper. The point
of departure in their paper occurs where they began to
analyze the perturbed flow equation. At that point they
made simplifying assumptions of analyzing a perturbation
initiating from a single point in the flow, leading to an
equation with constant coefficients. This simplified equa-
tion does not adequately represent the full perturbed basic
solution as analyzed in this manuscript. It is this result that
led Du et al. [2001] to conclude incorrectly that the
Richards equation is conditionally stable to infinitesimal
perturbations.
[58] The stability analysis by Kapoor [1996] was based

on the assumption of steady state flow, and determined the
conditions for which infinitesimal perturbations to the
steady state flow would amplify (flow becomes unstable).
His mathematical formulation is correct up to equation (8).
At that point in his formulation he simplifies his eigenvalue
problem by assuming the planar perturbations to be small
compared to the perturbations in the direction of flow. This
assumption transforms the perturbation equation to a simple
algebraic equation (equation (16)) for the growth factor.
This simplification leads to the incorrect conclusion that the
Richards equation is conditionally stable.
[59] The Richards equation is the well-accepted equation

for representing the mass balance for flow in unsaturated
porous media. The conclusion that this equation cannot
represent unstable flows brings to question as to what
should be the appropriate equation to represent such flows.
Two modifications to the Richards equation were consid-
ered in this manuscript to derive a model for representing
unstable flow. These will be discussed in the following.
[60] One modification to the RE model is that given by

the Stefan-like SFRE model, which is based on the air entry
pressure concept (section 5). Selecting this model was based
on the observations in fingering experiments that the
wetting front is very sharp and followed by a decrease in
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saturation. While this modification to the RE does lead to
instability of the traveling wave solution, we are very
skeptical about using this model for fingering. The reason
for the scepticism is that the function k0(w) is monotonic in
the SFRE model and, hence, no fastest growing perturbation
can be distinguished. The instability produced by the SFRE
model is similar to the persistence-free Saffman-Taylor
instability. It is known that unconditional instability produ-
ces a tree-like fractal structure because high-frequency
perturbations have the fastest growth. However, experimen-
tally observed fingers [e.g., Glass et al., 1989; Selker et al.,
1992] have a well-defined width. This very distinguished
discrepancy is not likely to be eliminated by introducing
hysteretic properties in capillary pressure-saturation rela-
tionship. The dominating finger phenomenon must there-
fore be produced by another type of instability such as that
described next.
[61] Based on discussions by others we perceive that

fingering in unsaturated porous media is caused by processes
that occur at the pore scale [Ursino, 2000, p. 270]. The
conventional theory given by the RE is inadequate to
represent fingering phenomena because the RE is derived
by upscaling microscopic equations that do not account for
these pore scale processes. Therefore some modification is
needed to the macroscopic flow equations to incorporate the
microscopic flow phenomena. We have suggested one pos-
sible model is that given by the nonequilibrium capillary
pressure-saturation relation. That relation has been derived
by either upscaling the microscale capillary phenomenon
using homogenization [Panfilov, 1998] or applying thermo-
dynamic considerations [Hassanizadeh and Gray, 1993].
[62] Adapting this upscaled result we modified the RE

with a model containing dynamic memory effects. As
shown in section 6, the traveling wave solution for this
model must be nonmonotonic to produce instability.
Egorov et al. [2002] have shown that the traveling wave
solution for the NERE model using the special rheolog-
ical function given by equation (34) [Gray and Hassani-
zadeh, 1991] turned out to be conditionally stable, and
therefore appears to be an appropriate model to describe
fingering. A comprehensive study of this NERE model is
straightforward and will be considered in a subsequent
paper.

Appendix A: Proof of Equation (5) for the Case
of Heterogeneous Porous Media

[63] Let � be a bounded porous medium with a piecewise
continuous boundary 
 and is divided on a set of subdo-
mains �i with distinctive geometry (properties). Richards’
equations (1) and (3) hold within each subdomain holding
the specific functions Ki(s) and Si pð Þ. On the interfaces
between subdomains pressure and normal water flux func-
tions hold continuous. The outer boundary of � is divided
on two parts: on the first part, 
p, we specify pressure, while
on the second one, 
q, normal flux qn to the boundary. Two
possible solutions to the problem with two different initial
conditions s1

0 and s2
0 are considered. Let p1, s1 = S(p1) be the

first solution, while p2, s2 = S( p2) be the second possible
solution. Hereafter we use the notation S( p) and K(s) to
define the functions in � and they coincide with Si and Ki

in �i respectively. Let us also define the hydraulic conduc-

tivity K pð Þ ¼ K S pð Þð Þ as a function of pressure obeying
the following inequality

K pað Þ � K pbð Þj j 	 A pa � pbj j; 8 pa; pb ðA1Þ

with a constant A being unique within all subdomains. Since
functions Si and Ki are smooth the constant A may be taken
as

A ¼ max
i

max
s

K 0
i sð Þ �max

p
S0
i pð Þ

� �
:

[64] Multiplying equation (1) by some continuous and
smooth function h, with the condition h = 0 on 
p, and then
integrating equation (1) over � by parts yields

Z
�

@s1
@t

hd�þ
Z
�

K p1ð Þ rp1 þ~ezð Þrhd� ¼
Z

q

qnhd
q; ðA2Þ

where qn is the flux normal to the boundary. An identity
analogous to equation (A2) may be also derived for p2.
Subtracting one of these identities from another we get

Z
�

@ s1 � s2ð Þ
@t

hd� ¼ J � J1;

J1 ¼
Z
�

K p1ð Þr p1 � p2ð Þ � rhd�;

J ¼
Z
�

K p2ð Þ � K p1ð Þð Þ rp2 þ~ezð Þ � rhd�:

ðA3Þ

The following analysis relies on choosing the form of the
function h in equation (A3).
[65] We introduce an auxiliary continuously-differentia-

ble function m: (�1,1) ! [0,1], such as (1) m(x) � 0 for x
	 0, (2) m(x) � 1 for x � 1, and (3) m(x) monotonically
increases with x for 0 < x < 1. We also introduce a
parametric family of functions he(x) = m(x/e) based on the
function m(x) and bearing two main asymptotic properties

he xð Þ ! sign0 xð Þ ¼ 0 for x 	 0;
1 for x > 0;

�
as e ! 0; ðA4Þ

B eð Þ ¼ max
x

x2h0e xð Þ
� �

! 0 as e ! 0: ðA5Þ

Nowwe pick the formofh in equation (A3) as h=he(p1� p2).
The requirement that the functions p1 and p2 coincide on 
p

forces the condition h = 0 being performed on this part of the
boundary.
[66] We now estimate the right-hand side of equation

(A3). We recall that rhe(p1 � p2) = h0e(p1 � p2)r(p1 � p2)
and it allows us to transform J1 and J in equation (A3) to

J1 ¼
Z
�

K p1ð Þ r p1 � p2ð Þj j2h0e p1 � p2ð Þd�;

J ¼
Z
�

K p2ð Þ � K p1ð Þð Þ rp2 þ~ezð Þ � r p1 � p2ð Þh0e p1 � p2ð Þd�:
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Using equation (A1) and applying the Cauchy-Schwartz
inequality in conjunction with definition equation (A5) for
B we estimate J as

jJ j 	
Z
�

Ajp1 � p2j jrp2j þ 1ð Þjr p1 � p2ð Þjh0e p1 � p2ð Þd�

	
ffiffiffiffiffiffiffiffiffi
J1J2

p
;

J2 ¼ A2

Z
�

p1 � p2ð Þ2h0e p1 � p2ð Þ jrp2j þ 1ð Þ2

K p1ð Þ d�

	 A2B eð Þ
Z
�

jrp2j þ 1ð Þ2

K p1ð Þ d�:

[67] The combination of J1 and J2 produces
ffiffiffiffiffiffiffiffiffi
J1J2

p
	

J1 þ J2=4; which then yields the necessary estimation

J � J1 	
1

4
A2B eð Þ

Z
�

jrp2j þ 1ð Þ2

K p1ð Þ d�:

[68] Having this estimate we obtain

Z
�

@ s1 � s2ð Þ
@t

he p1 � p2ð Þd� 	 1

4
A2B eð Þ

Z
�

jrp2j þ 1ð Þ2

K p1ð Þ d�:

ðA6Þ

The integral at the right-hand side of equation (A6) is
bounded, and tending e to zero and using equations (A4)
and (A5), we can transform equation (A6) by integrating it
with time to

Z t

0

Z
�

@ s1 � s2ð Þ
@t

sign0 p1 � p2ð Þd�dt 	 0: ðA7Þ

The subdomain of � � [0, t] where s1 � 1 and s2 � 1
simultaneously contributes zero in integral (A7) because
saturation holds constant in saturated media and both @s1/@t
and @s2/@t equal zero. In the rest of � � [0,t], either s1 or s2
is less than a unity and sign0( p1 � p2) = sign0(s1 � s2)
because function S pð Þ is monotonic. This shows that
sign0( p1 � p2) in equation (A7) may be replaced by
sign0(s1 � s2) transforming equation (A7) to

Z t

0

Z
�

@

@t
s1 � s2ð Þþd�dt 	 0; ðA8Þ

where the superscript + indicates the positive part of the
function, i.e., s+ = max(0, s). Equation (A8) is also valid if
solutions s1 and s2 are exchanged. Thus using elementary
equality jsj = (s)+ + (�s)+ yields

Z t

0

Z
�

@

@t
js1 � s2jd�dt 	 0:

Finally, taking the time derivative out of the integral proves
inequality (5).

Appendix B: Transformation of Perturbed
Equation for the RE Model

[69] Introducing new function ~s1, such as �s1 = �s0
0~s1, we

rewrite equation (16) as

@~s1
@t

þ w2D s0ð Þ~s1 þ
dx
ds0

@F

@x
¼ 0;

F ¼ K 0 s0ð Þ � vð Þs00~s1 �
@

@x
D s0ð Þs00~s1
� �

:

Identically transforming F by

F ¼ d

dx
K s0ð Þ � vs0 � D s0ð Þ ds0

dx

� �
~s1 � D s0ð Þs00

@~s1
@x

and noticing that the first term in the right-hand side is equal
to zero by virtue of equation (9), we obtain

@~s1
@t

þ w2D s0ð Þ~s1 �
dx
ds0

@

@x
D s0ð Þ ds0

dx
@~s1
@x

� �
¼ 0: ðB1Þ

Replacing x and ~s1 by z and q respectively defined in
equation (17) where q = B~s1 we obtain from equation (B1)

@q
@t

þ w2Dq ¼ 1

B

@

@z
B2 @

@z
q
B

� �
: ðB2Þ

Simple transformations shows that the right-hand side of
equation (B2) is equal to

@2q
@z2

� q
B

@2B

@z2

which yields the perturbed equation (18).

Appendix C: Analysis of Spectral Problem for
the SFRE Model

[70] The potential U being bounded requires that the
essential spectrum of the problem is the interval [less(k),
1] with

less kð Þ ¼ lim
x!�1

U k; xð Þ ¼ F� � k=D�:

Notice that since F� = ((K0
� � v)/2D�)

2 and D� are
positive this essential spectrum lies outside the quadrant
{l 	 0, k 	 0}.
[71] Eigenvalues l0(k), l1(k),. . . lie lower than the essen-

tial spectrum, and l0(k) < l1(k) < < less(k). Eigenfunctions
� corresponding to these eigenvalues belong to a space Vof
functions such as squares of both these functions and their
first derivatives are integrable on [0,1]. It follows that the
eigenvalues and corresponding eigenfunctions may be
found by the variational Courant-Fisher principle

ln kð Þ ¼ min
Vnþ1�V

max
y2Vnþ1

I0 yð Þ þ kI1 yð Þð Þ=jyj2; n ¼ 0; 1; . . . ðC1Þ
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where Vn is the n-dimensional subspace V, jyj2 =
R
�1
0 y2dx

is the norm square in L2(�1,0), and functionals I0 and I1
are

I0 yð Þ ¼
Z0

�1

y02 þ Fy2
� �

dx� B0

B
y2 0ð Þ;

I1 yð Þ ¼ �
Z0

�1

1

D
y2 dxþ se � sþ

B2 0ð Þ y2 0ð Þ:

[72] Let us study the main eigenvalue of the problem
l0(k). The Courant-Fisher principle may be written for the
main eigenvalue as

l0 kð Þ ¼ min
y2V

I0 yð Þ þ kI1 yð Þð Þ=jyj2: ðC2Þ

Substitution of k = 0 into equation (C2) concludes that
function � = B turns out to be the eigenfunction
corresponding to the eigenvalue l = 0 (w = 0). Since B > 0,
this eigenvalue is considered as the main eigenvalue and may
be derived from (C2) as

l0 0ð Þ ¼ min
y2V

I0 yð Þ=jyj2 ¼ I0 Bð Þ=jBj2 ¼ 0: ðC3Þ

Let us choose B as a sample function for equation (C2).
Using (C3) we obtain that l0(k) 	 kI1(B)/jBj2. I1(B) is
expressed explicitly as

I1 Bð Þ ¼ �
Z0

�1

s00 dxþ se � sþð Þ ¼ s� � sþð Þ;

which yields the following estimation of the main
eigenvalue

l0 kð Þ 	 ak; a ¼ s� � sþð Þ=jBj2 > 0: ðC4Þ

This upper limit for l0(k) in conjunction with the property
of the continuous spectrum shown above demonstrates that
l0(k) exists for any negative k. Function l0(k) is continuous
and convex. The latter property is arrived at due to the
Rayleigh relation in (C2) being linear with regard to k. This
finally establishes that l0 monotonically increases with
increase of k from �1 at k = �1 to zero at k = 0.
[73] Now we show that the remaining part of the spec-

trum lies outside the quadrant {l 	 0, k 	 0}. This
statement has been proved above for the essential part of
the spectrum. For the discrete part this holds because (1)
ln(0) > l0(0) = 0 for all n � 1 and (2) ln(k) > 0 is valid for k
< 0 and any n � 1. To prove this we designate Vn

0 to the
subspace of functions y from Vn and satisfying the condi-
tion y(0) = 0. Using equation (C3) the inequality

I0 yð Þ þ kI1 yð Þ � I0 Bð Þ � k

Z0

�1

1

D
y2 dx � bjyj2

with positive b = �k/D� holds for y 2 Vn+1
0 and k < 0, and

therefore we get from equation (C1) the following chain of
inequalities

ln kð Þ ¼ min
Vnþ1�V

max
y2Vnþ1

I0 yð Þ þ kI1 yð Þð Þ=jyj2

� min
Vnþ1�V

max
y2V 0

nþ1

I0 yð Þ þ kI1 yð Þð Þ=jyj2 � b > 0: ðC5Þ
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